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Abstract.
Background: Mild cognitive impairment (MCI), which is common in older adults, is a risk factor for dementia. Rapidly
growing health care demand associated with global population aging has spurred the development of new digital tools for
the assessment of cognitive performance in older adults.
Objective: To overcome methodological drawbacks of previous studies (e.g., use of potentially imprecise screening tools
that fail to include patients with MCI), this study investigated the feasibility of assessing multiple cognitive functions in older
adults with and without MCI by using a social robot.
Methods: This study included 33 older adults with or without MCI and 33 healthy young adults. We examined the utility of
five robotic cognitive tests focused on language, episodic memory, prospective memory, and aspects of executive function
to classify age-associated cognitive changes versus MCI. Standardized neuropsychological tests were collected to validate
robotic test performance.
Results: The assessment was well received by all participants. Robotic tests assessing delayed episodic memory, prospective
memory, and aspects of executive function were optimal for differentiating between older adults with and without MCI,
whereas the global cognitive test (i.e., Mini-Mental State Examination) failed to capture such subtle cognitive differences
among older adults. Furthermore, robot-administered tests demonstrated sound ability to predict the results of standardized
cognitive tests, even after adjustment for demographic variables and global cognitive status.
Conclusion: Overall, our results suggest the human–robot interaction approach is feasible for MCI identification. Incorpo-
rating additional cognitive test measures might improve the stability and reliability of such robot-assisted MCI diagnoses.
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INTRODUCTION

Rapidly growing health care demand associated
with the aging population and the corresponding
increase in the prevalence of chronic conditions such
as dementia has placed considerable strain on health
care systems worldwide. Evidence from both neu-
ropsychological and neuroimaging studies suggests
that mild cognitive impairment (MCI) represents a
risk factor for as well as a transitional phase in degen-
erative dementias such as Alzheimer’s disease (AD)
[1–3]. Early MCI detection may facilitate the identi-
fication of people eligible for medical or behavioral
interventions and may delay the onset of dementia [4,
5], and it may help identify patients eligible for partic-
ipation in clinical trials that promote the development
of innovative AD therapies [6].

Assessment of cognitive function is a crucial
component of the multifaceted diagnostic process
for MCI. Traditionally, cognitive evaluations are
conducted in a clinical setting through standard-
ized paper–pencil tests. However, impediments such
as insufficient access to health care personnel and
resources [6], increased health care costs, and
inadequate self-awareness among older adults for
recognizing their cognitive impairment (particularly
when the impairment is mild) often prevent older
adults from receiving appropriate health care [6–8].
The new wave of innovation and the increasing acces-
sibility of technology hold promise for the early
diagnosis and management of MCI. Among these
modern technologies, robotic technology, which
involves the use of robots to perform tasks tradition-
ally performed by humans, offers several advantages
over other technology or devices, such as tablets
or web-based platforms, for assessing or monitor-
ing older adults’ cognitive function. Specifically,
robotic technology can provide standardized admin-
istration of cognitive tests and obtain objective and
granular behavioral data efficiently and reproducibly,
which are essential requirements for reliable cogni-
tive assessments, and such technology can offer an
embodied presence that may enhance user engage-
ment during testing [9–11]. More critically, such
assessments are more stimulating and interactive than
other remote testing methods [12]. Robot-assisted
cognitive assessments also automatically record par-
ticipant responses and behaviors for further analysis
by professionals. It also requires a lower user techno-
logical proficiency than that required for interfacing
with other electronic devices (e.g., a computer or vir-
tual electronic device) [13]. Hence, compared with

other remote assessment methods, robotic assess-
ments of cognitive function are more enjoyable and
accessible for older adults who prefer at-home health
care services [14].

Studies have suggested that robotic technology is a
promising technique for assessing older adults’ cog-
nitive function [15–17]. However, these studies had
certain drawbacks. For example, all these studies
[15–17] have focused on cognitively healthy older
adults because their primary goal was to demon-
strate the feasibility of applying a robotic technology
in cognitive evaluations of this population. There-
fore, empirical data on robotic assessments of MCI
remain limited. Moreover, these researchers have
only embedded a screening test for assessing global
cognitive function, such as the Mini-Mental State
Examination (MMSE), Montreal Cognitive Assess-
ment, or the Telephone Interview for Cognitive
Status, in their robotic systems [15–17]. Although the
aforementioned tests are commonly used in clinical
and research settings, these brief screening measures
often fail to capture the subtle but noteworthy cogni-
tive and functional changes during the MCI stage [2,
18]. Moreover, the scores obtained in these screening
tests may be more easily skewed by age, educa-
tion, or socioeconomic biases [19]. Evidence has
shown that incorporating more neuropsychological
measures into MCI diagnosis improves the sensitiv-
ity and reliability of a diagnosis that predicts clinical
decline [1, 20–22].

To address these knowledge gaps, two key ques-
tions were addressed in this study. First, we examined
the feasibility of using robot-administered cognitive
tests to detect differences among older adults with
MCI, healthy older adults (HO), and healthy young
adults (HY). In the present study, we designed a series
of short cognitive tests focused on assessing lan-
guage, episodic memory, prospective memory, and
executive function, which are the cognitive domains
that best discriminate age-associated cognitive
changes from MCI [22–24]. Second, we examined
the construct validity of the robot-administered cog-
nitive tests. Specifically, we performed standardized
neuropsychological tests to serve as a benchmark for
the robot-administered tests. We hypothesized that
a human–robot interaction (HRI) approach is feasi-
ble for the detection of MCI. Additionally, although
age-associated cognitive changes in episodic mem-
ory, prospective memory, and aspects of executive
function were expected to be observed in older adults
with or without MCI relative to HY, older adults with
MCI were hypothesized to have lower performances
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Fig. 1. A participant interacts with the social robot, RoBoHoN, in a laboratory containing a one-way mirror. Permission to use the picture
was granted by the participant.

in the aforementioned cognitive domains compared
with HO. We also hypothesized that participants’
performances on the robotic assessment tests could
predict their performances of the corresponding stan-
dardized neuropsychological tests.

METHODS

Participants

This study group consisted of 33 HY (ages 18–35
years) and 33 older adults (aged older than 60 years).
Among the older adults, 15 were individuals with
MCI and 18 were HO. Participants were thoroughly
screened through interviews, and individuals with a
current or past diagnosis of a neurological or psychi-
atric disorder, a known head injury that involved loss
of consciousness, a history of alcohol or substance
abuse in any a given period of life, or any severe
hearing or visual impairments that might lower their
neuropsychological performance were excluded. The
HY and HO participants were recruited from local
communities with an MMSE score of ≥ 26. Indi-
viduals with MCI were recruited from the memory
clinics of the National Taiwan University Hospi-
tal. The participants were classified as having MCI
according to the following criteria: 1) normal activ-
ities of daily living, 2) absence of dementia, 3) a
global rating of 0.5 on the Clinical Dementia Rat-
ing scale [25], and 4) objective cognitive impairment,
which was operationally defined as performance
≥ 1.0 standard deviation (SD) lower than the age-
appropriate norm on at least two measures in one or

more cognitive domains [26]. Four neuropsycholog-
ical domains were assessed using the following tests:
1) attention: the digit span forward length and digit
symbol substitution (DSS) of the Wechsler Adult
Intelligence Scale, third edition (WAIS-3) [27]; 2)
language: the vocabulary subtest of WAIS-3 and the
30-item Boston Naming Test [28]; 3) learning and
memory: the logical memory and visual reproduc-
tion subtests of the Wechsler Memory Scale, third
edition (WMS-3) [29]; and 4) executive function:
the design fluency test (switching condition) of the
Delis–Kaplan Executive Function System (D-KEFS)
[30] and the letter-number sequencing subtest of the
WAIS-3. The present study was approved by the
Ethics Committee and Institutional Review Board
of both National Taiwan University Hospital and
National Taiwan University. Before conducting the
experimental procedures, written informed consent
was obtained from all participants.

Social robot

RoBoHoN, a fourth-generation mobile communi-
cation robot developed by Sharp Corporation, was
used to administer the cognitive tests in the HRI
study. RoBoHoN is a humanoid-shaped robot that
is 19.5-cm tall and has built-in functions of talking
with users as well as performing actions such as walk-
ing, moving its hands, dancing, and turning its head
(Fig. 1). Therefore, to build a rapport and render the
test process more enjoyable for the participants, the
robot was preprogrammed to initiate context-specific
small talk with the participants at the beginning of
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the experimentation sessions and in between the tests.
The robot also performed several dance moves at the
end of the HRI experiment as reward for the partici-
pants’ efforts in the study.

Experimental procedure

The present study was part of a larger HRI study
that consisted of three sessions: 1) robot-administered
cognitive testing, 2) robot-accompanied toy-playing,
and 3) robot-assisted questionnaire data collection
[13]. The present study only presents data collected
in the first session, which had a duration of approx-
imately 25 min. In the HRI session, each participant
interacted with the robot alone in a room, with the
robot placed on a table in front of the participant
such that it was easy to interact and make eye con-
tact with each other (Fig. 1). The HRI session was
monitored by research staff seated behind the one-
way mirror hidden from participants. All data in the
HRI session was recorded by a hidden camera. Robot-
administered cognitive testing data collected during
the experimentation session were scored offline by
a professional neuropsychologist who watched the
recorded videos. A subset of the participants (17
HYs, 13 HOs, and 15 individuals with MCI) under-
went a second cognitive testing session to collect their
performance on selective standardized neuropsycho-
logical tests, which was used as a benchmark for the
robot-administered cognitive tests. The two cogni-
tive testing sessions were no more than one week
apart. All the participants completed the MMSE first
as part of the screening process, then the robot-
administered cognitive test session, and finally the
standardized neuropsychological test session. Over-
all, the testing protocol used in the present study was
well received by all individuals in the cohort, and
none demonstrated adverse effects resulting from the
robotic assessment. No participant reported discom-
fort or difficulty in completing the tasks.

Cognitive tests

Robot-administered cognitive test
Five brief cognitive tests were administered by the

robot to assess participants’ cognitive functioning in
verbal fluency, episodic memory, prospective mem-
ory, and aspects of executive function (e.g., working
memory, inhibition, and shifting). Specifically, these
tests included category fluency (animals) and a back-
ward digit span test similar to the digit span subtest of
the WAIS-III [27]; in this test, the participant repeated

the digits (with a span ranging from two to eight
digits) read by the robot in backward order.

Additionally, a word-list learning test, which con-
sisted of three learning trials of ten concrete nouns,
was administered. Each item of the list was read
by the robot, and participants were asked to recall
all words they remembered in any order following
each of three exposures. Ten minutes after the study
session, a delayed free recall test was administered,
followed by an old (for ten learned items) or new (for
ten lures) verbal recognition test. Three indexes gen-
erated from this task were used for analyses, namely
total learning score, delayed free recall score, and
delayed recognition d prime (d’, the standard hit rate
score minus the standard false alarm rate score).

An event-based prospective memory (PM) test was
also administered. Participants were instructed to
inform the robot of their birthdate as soon as they
heard the verbal cue: the robot inquired about their
need to go to a restroom (approximately 20 min after
initial instruction) during the assessment. Participants
could receive a maximal total score of four points: two
points for the prospective component and two points
for the retrospective component. For the prospective
component, two points were awarded if the partic-
ipant demonstrated any intention to respond to the
cues (e.g., saying “I know I was supposed to say
something, but I cannot remember what it is”) within
15 s, one point if their response was late or required
prompting (i.e., “Was there something you want to
tell me?” prompted by the robot), and zero points
if no action was performed. For the retrospective
component, the participant received two points if a
correct response was generated, one point if a simi-
lar response (e.g., telling the date of the experiment
conducted instead of their birthdate) was performed,
and zero points if the wrong action (e.g., answering
the prospective cue literally) or no action was carried
out.

Furthermore, to evaluate inhibition and shifting
abilities in terms of executive function, a modified
version of the Color–Word Interference Test (CWIT)
of the Delis–Kaplan Executive Function System (D-
KEFS) [30] was administered. In this task, verbal
instructions were read out by the robot, and the stimuli
were visually presented on a tablet. The participants
were asked to name the color patches (condition 1),
the color words (condition 2), the color of ink instead
of the word written (condition 3), or to shift between
naming the color of the ink or the word written (condi-
tion 4) as quickly as possible. The completion time for
each condition was recorded by the robot separately
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through the verbal responses, but only the comple-
tion times of conditions 3 and 4 were used for further
analyses.

Paper and pencil-based standardized
cognitive test

As a benchmark for the robot-administered results,
three standardized cognitive tests were administered:
1) the MMSE, 2) conditions 3 and 4 of the CWIT of
the D-KEFS [30], which measure inhibition and shift-
ing abilities, respectively, and 3) the California Verbal
Learning Test-II (CVLT-II) [31]. Notably, these tests
were not used for MCI diagnoses.

Statistical analyses

Analyses of variance (ANOVAs) or chi-squared
tests were used to compare group demographics
(age, education, and sex). Because educational lev-
els significantly differed between groups, to evaluate
group differences in cognitive variables, we con-
ducted ANCOVAs controlled for educational level,
with Bonferroni adjustments for Type I errors at an �
level of 0.0056 for the robot-administered tests and an
� level of 0.0125 for the set of paper–pencil tests. The
� level was set at 0.05 for all post hoc comparisons.
The effect sizes were calculated for pairwise com-
parisons of cognitive variables that were significant
according to Cohen’s d [32].

To evaluate the ability of the robot-administered
cognitive tests to differentiate between individu-
als with and without MCI, we conducted binomial
logistic regression, with an � level of 0.05. Specif-
ically, the predictors included in the model were
robot-administered cognitive test variables that were
significantly different between the HO and MCI
groups. The overall accuracy, sensitivity, specificity,
positive predictive value, and negative predictive
value of the robot-administered tests to identify indi-
viduals with MCI were calculated.

Separate hierarchal multiple regression analyses
were conducted on data for the full cohort to deter-
mine the predictive value of robot-administered tests
for performance of the corresponding standardized
neuropsychological tests. In the regression mod-
els, age, education, sex (dummy coded as 1 = men,
0 = women), and MMSE scores were entered in the
first step as predictors. The robot-administered test
results that exhibited significant differences between
the HO and MCI groups, namely the word-list total
learning scores (model 1), delayed recognition d’
scores (model 2), PM prospective scores (model 3),

modified CWIT condition 3 scores (model 4), and
modified CWIT condition 4 scores (model 5), were
entered in the second step individually as a predic-
tor for each model. The corresponding dependent
variables were CVLT-II total learning (model 1),
long-delayed free recall (model 2), D-KEFS CWIT
condition 4 (shifting condition, model 3), and D-
KEFS CWIT conditions 3 (model 4) and 4 (model 5).
The mappings between the predictors and the depen-
dent variables were based on the similarity of the test
constructs and underlying cognitive process between
the predictors and dependent variables (e.g., word-list
total learning to the CVLT-II total learning). Addi-
tionally, in model 2, CVLT-II delayed free recall was
selected as the dependent variable because evidence
suggests that this variable, rather than the delayed
recognition variable, is the optimal neuropsychologi-
cal predictor of progression from MCI to Alzheimer’s
disease [33, 34]. Notably, PM has been reported to
be strongly correlated with shifting ability in execu-
tive function [35, 36], and therefore, D-KEFS CWIT
condition 4, which assesses shifting ability, was used
as the dependent variable in our regression analy-
sis for the robotic PM test. Results were reported as
significant at the threshold of p < 0.01 (Bonferroni
correction) for each overall model, and significant
predictors were selected using the forward selection
method.

RESULTS

Demographic characteristics

The three groups did not differ in their frequency
distribution based on sex. Significant group differ-
ences were observed for age, but the HO group and the
MCI group were comparable in age. Significant group
differences were observed for educational level, with
the MCI group having a lower level of educational
attainment compared with the HY and HO groups
(p = 0.006 and 0.005, respectively), but no differ-
ence between the HY and HO groups was discovered
(Table 1).

Cognitive performance

Group comparison results of robot-administered
tests

Because educational levels significantly differed
among groups, the analyses for the robot-adminis-
tered cognitive tests were adjusted for educational
attainment. The ANCOVA results (Table 1) revealed
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Table 1
Demographic and cognitive characteristics of the healthy young adults (HY), healthy old adults (HO), and older adults with mild cognitive

impairment (MCI)

HY HO MCI Statistics
(mean SD) (mean SD) (mean SD)

Demographics variables
Age 21.52 (2.24) 71.11 (3.55) 73.53 (6.39) F(2,63) = 1414.1, p < 0.001†
Education 15.06 (1.97) 15.44 (3.76) 12.67 (2.74) F(2,63) = 5.09, p = 0.009‡§

Gender (women/men) 17/16 8/10 9/6 χ2
(2,N = 66) = 0.79, p > 0.05

Robot-administered cognitive test
Category fluency 24.06 (5.91) 17.94 (5.56) 14.40 (4.47) F(2,62) = 15.24, p < 0.001†, partial η2 = 0.33
Digit span backward length (max = 8) 5.44 (1.48) 2.83 (1.43) 2.71 (1.20) F(2,62) = 26.75, p < 0.001†, partial η2 = 0.47
WLT total learning (max = 30) 21.36 (3.14) 19.83 (2.77) 17.27 (4.59) F(2,62) = 7.15, p = 0.002‡§, partial η2 = 0.19
WLT delayed free recall (max = 10) 7.58 (1.32) 6.69 (2.06) 5.60 (2.80) F(2,62) = 5.70, p = 0.005‡, partial η2 = 0.16
WLT delayed recognition d’ 0.34 (0.01) 0.33 (0.03) 0.28 (0.08) F(2,62) = 7.98, p = 0.001‡§, partial η2 = 0.21
PM prospective component (max = 2) 1.72 (0.58) 1.11 (0.90) 0.40 (0.73) F(2,62) = 19.56, p < 0.001†§, partial η2 = 0.39
PM retrospective component (max = 2) 1.79 (0.55) 1.17 (0.99) 0.53 (0.92) F(2,62) = 13.40, p < 0.001†§, partial η2 = 0.30
Modified CWIT condition 3 (s) 39.73 (9.19) 60.56 (11.62) 84.33 (26.49) F(2,62) = 37.98, p < 0.001†§, partial η2 = 0.55
Modified CWIT condition 4 (s) 51.24 (13.08) 76.61 (23.07) 121.67 (59.10) F(2,62) = 20.70, p < 0.001†§, partial η2 = 0.40

Standardized cognitive tests
MMSE (max = 30) 29.41 (0.80) 27.98 (1.46) 26.40 (2.23) F(2,62) = 10.89, p < 0.001†, partial η2 = 0.32
CVLT-II total learning (max = 80) 55.47 (5.43) 42.77 (7.97) 33.40 (11.10) F(2,41) = 22.99, p < 0.001†§, partial η2 = 0.53
CVLT-II long-delayed free recall (max = 16) 13.00 (2.26) 9.62 (2.22) 6.13 (3.72) F(2,41) = 19.62, p < 0.001†§, partial η2 = 0.49
D-KEFS CWIT condition 3 (s) 33.59 (7.69) 59.69 (12.72) 88.73 (27.97) F(2,41) = 29.80, p < 0.001†§, partial η2 = 0.59
D-KEFS CWIT condition 4 (s) 44.71 (11.01) 70.15 (14.22) 128.67 (50.90) F(2,41) = 22.22, p < 0.001†§, partial η2 = 0.52

All scores are raw scores. CVLT-II, California Verbal Learning test, second version; D-KEFS CWIT, the Color–Word Interference Test
(CWIT) of the Delis–Kaplan Executive Function System; MMSE, Mini-Mental State Examination; PM, prospective memory; WLT, word-
list test. p indicates the results of the overall intergroup comparisons. All results of cognitive tests, including the MMSE, were based on
analyses with educational level as a covariate; † indicates significant differences between the HY group and both the HO and MCI groups;
‡ indicates a significant difference between the HY group and the MCI group; § indicates a significant difference between the HO group and
the MCI group.

that the three groups significantly differed across all
tests administered. The post hoc analyses demon-
strated an effect of aging (i.e., HY > HO = MCI) on
the category fluency test and digit span backward test.
Specifically, the HY group outperformed both the HO
(p < 0.001, d = 1.07 versus p < 0.001, d = 1.80) and
MCI (p < 0.001, d = 1.84 versus p < 0.001, d = 2.03)
groups, whereas the two older groups exhibited sim-
ilar performance.

An effect of risk factor status (i.e., HY = HO >
MCI) was observed on the results of the word-list
total learning and delayed recognition d’ measures.
Specifically, the MCI group had poorer performance
on the two measures compared with both the HY
(p < 0.001, d = 1.04 versus p < 0.001, d = 0.99) and
HO groups (p = 0.034, d = 0.52 versus p = 0.004,
d = 0.82), but the HY and HO groups did not dif-
fer between one another (Fig. 2). By contrast, on the
word-list delayed free recall test, the MCI group had
significantly lower performance (p = 0.002, d = 0.91)
than the HY group and marginally lower performance
(p = 0.089, d = 0.44) compared with the HO group.
However, no difference between the HO and HY
groups was observed on the same measure.

On the PM and modified CWIT tests, a com-
bined effect of aging and risk factor status (i.e.,
HY > HO > MCI) was observed. Specifically, the
HY group outperformed both the HO and MCI
groups on PM prospective score (p = 0.007, d = 0.81
versus p < 0.001, d = 1.99), PM retrospective score
(p = 0.009, d = 0.78 versus p < 0.001, d = 1.67), and
modified CWIT condition 3 (p < 0.001, d = 1.99 ver-
sus p < 0.001, d = 2.25) and condition 4 (p = 0.007,
d = 1.35 versus p < 0.001, d = 1.65) completion times.
The HO group outperformed the MCI group on
PM prospective score (p = 0.002, d = 0.86), PM ret-
rospective score (p = 0.023, d = 0.67), and modified
CWIT condition 3 (p = 0.001, d = 1.16) and condition
4 (p = 0.001, d = 1.00) completion times.

Distinguishing MCI by using robot-administered
tests

A binomial logistic regression was performed to
determine whether the robot-administered cognitive
tests were useful in distinguishing between older
adults with MCI and those without MCI (young adults
were not included in this analysis). Six cognitive test
variables (i.e., word-list total learning and delayed
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Fig. 2. Performance on the cognitive tests administered by the robot for young healthy adults (HY), older healthy adults (HO), and individuals
with mild cognitive impairment (MCI). Error bars denote the standard error of the mean. PM-P, prospective memory prospective score; PM-R,
prospective memory retrospective memory; Modified CWIT 3 and 4, modified Color-Word Interference Test condition 3 and condition 4.
All analyses were conducted with education level as a covariate. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.005.

recognition d’ measures, PM tests, and modified
CWIT tests) were included in the model based on
the between-group comparisons showing significant
group differences between the HO and MCI groups.
The results suggest that the logistic regression model
was statistically significant, [χ2 (6, N = 33) = 17.39,
p = 0.009], explaining 56.4% (Nagelkerke R2) of the
variance in MCI classification and correctly clas-
sifying 84.8% of cases (OH group: 16/18; MCI
group: 12/15), with a sensitivity of 80%, specificity
of 88.9%, positive predictive value of 85.7%, and
negative predictive value of 84.2%.

Performance across robot-administered tests
We calculated z scores for each older adult par-

ticipant by using the mean and SD from the HO
group in each of the six robotic measures (Fig. 2)
that differentiated the HO and MCI. Individuals

with scores 1 SD lower than the HO group average
were identified for the cohort with MCI and older
controls. In the MCI group, the percentages of par-
ticipants with low performance (i.e.,<1 SD lower
than the HO group average) on the robotic word-list
total learning, delayed recognition d’, PM prospec-
tive and retrospective components, and modified
CWIT conditions 3 and 4 indexes were 33%, 67%,
73%, 73%, 67%, and 53%, respectively. In HO, the
percentages for the corresponding measures were
16%, 22%, 33%, 39%, 17%, and 17%, respectively
(Fig. 3A). We further examined differences between
the HO and MCI groups through a frequency dis-
tribution of people who had low performance on
one or more of the tests. The results revealed that
the MCI group contained more people who were
low performers compared with the HO group on
the measures of word-list delayed recognition d’ [χ2
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Fig. 3. A) Group summary of proportion (as a percentage) of healthy older adults (HO) and individuals with mild cognitive impairment
(MCI) who had a performance score more than 1 SD below the HO average in the robotic tests. ∗p < 0.05; ∗∗∗p < 0.005. B) Cumulative
proportion (as a percentage, y-axis) of participants who recorded low performance on one to six of the robot-administered cognitive tests
(x-axis).

(1, N = 33) = 6.62, p = 0.01], PM prospective (χ2 (1,
N = 33) = 5.24, p = 0.022), PM retrospective compo-
nent (χ2 (1, N = 33) = 3.92, p = 0.048), and modified
CWIT condition 3 (χ2 (1, N = 33) = 8.57, p = 0.003)
and condition 4 (χ2 (1, N = 33) = 4.95, p = 0.026).

We further calculated cumulative percentages of
people with low performance across the six measures.
In the MCI group, 100% (15), 87% (13), 67% (10),
53% (8), 40% (6), and 20% (3) of people had low
performance on at least one test, at least two tests, at
least three tests, at least four tests, at least five tests,
and on all six tests, respectively. By contrast, in the
HO group, 67% (12), 44% (8), 28% (5), 6% (1), 0%
(0), and 0% (0) of people had low performance on at
least one test, at least two tests, at least three tests, at
least four tests, at least five tests, and on all six tests,
respectively (Fig. 3B).

Performance on the standardized paper–pencil
tests

The ANCOVA results adjusted for educational
level on paper–pencil standardized cognitive tests
revealed that the three groups significantly dif-
fered across the various measures used (Table 1).
Specifically, the post hoc analyses showed that an
effect of aging was observed in the MMSE score,
with the HY group outperforming both the HO
(p = 0.005, d = 1.06) and MCI (p < 0.001, d = 1.80)
groups, whereas the two older groups had similar
performance.

On the results of CVLT-II and D-KEFS CWIT
measures, a combined effect of aging and risk factor
status (i.e., HY > HO > MCI) was observed. Specifi-
cally, the HY group outperformed both the HO and
MCI groups on measures of CVLT-II total learn-

ing (p < 0.001, d = 1.86 versus p < 0.001, d = 2.53),
CVLT-II long-delayed free recall (p = 0.003, d = 1.51
versus p < 0.001, d = 2.23), standardized CWIT
condition 3 (p < 0.001, d = 2.48 versus p < 0.001,
d = 2.69), and standardized CWIT condition 4
(p = 0.03, d = 2.00 versus p < 0.001, d = 2.28). The
HO group outperformed the MCI group on CVLT-
II total learning (p = 0.015, d = 0.97), CVLT-II
long-delayed free recall (p = 0.005, d = 1.14), stan-
dardized CWIT condition 3 (p = 0.001, d = 1.34),
and standardized CWIT condition 4 (p < 0.001,
d = 1.57).

When referencing clinically age-appropriate
norms, in the HO group, only 1 (8%) participant
registered a score of more than 1 SD below the
age-appropriate norm on the standardized CWIT
condition 3, and no participants recorded such a
score on CVLT-II total learning, long-delayed free
recall, and CWIT condition 3 variables. In the
MCI group, 7 (47%), 8 (53%), 8(53%), 9 (60%)
individuals recorded scores more than 1 SD below
the age-appropriate norm for CVLT-II total learning,
long-delayed free recall, and standardized CWIT
conditions 3 and 4, respectively.

Predictive abilities of the performance of robotic
tests to standardized cognitive tests

The results of separate hierarchical regression
analyses (Table 2) revealed that the performance of
the five robot-administered tests that showed dif-
ferences between the HO and MCI groups were
predictors of performance on the corresponding
standardized neuropsychological tests, above and
beyond the contribution of demographic variables
and MMSE performance (Fig. 4).



Y.-L. Chang et al. / Robotic Assessment of Older-Adult MCI 1137

Table 2
Hierarchical regression analyses of demographic, clinical, and cognitive predictors of the standardized cognitive test scores

Model 1 Model 2 Model 3 Model 4 Model 5

CVLT-II CVLT D-KEFS D-KEFS D-KEFS
total long-delayed CWIT CWIT CWIT

learning free recall condition 4 condition 3 condition 4

Predictors β p β p β p β p β P

Step1:
Age –0.59 < 0.001∗∗∗ –0.51 < 0.001∗∗∗ 0.43 0.005∗∗∗ 0.69 < 0.001∗∗∗ 0.43 0.005∗∗∗
Education 0.13 0.36 0.12 0.41 –0.28 0.10 –0.20 0.19 –0.28 0.10
Sex (0, women; 1, men) –0.21 0.05 –0.30 0.009∗∗ 0.14 0.28 0.08 0.50 0.14 0.28
MMSE 0.20 0.21 0.24 0.13 –0.18 –0.14 –0.14 0.93 –0.18 0.33

R2 0.64 0.62 0.49 0.59 0.49
Adjusted R2 0.60 0.58 0.44 0.54 0.44
F 17.49 < 0.001∗∗∗ 16.05 < 0.001∗∗∗ 9.61 < 0.001∗∗∗ 14.12 < 0.001∗∗∗ 9.61 < 0.001∗∗∗

Step2: Robotic test
WLT total learning (Model 1) 0.41 0.001∗∗∗ – – – – – – – –
WLT delayed recognition d’ (Model 2) – – 0.32 0.005∗∗ – – – – – –
PM prospective score (Model 3) – – – – –0.41 0.007∗∗ – – – –
Modified CWIT condition 3 (Model 4) – – – – – – 0.85 < 0.001∗∗∗ – –
Modified CWIT condition 4 (Model 5) – – – – – – – – 0.69 < 0.001∗∗∗

R2 0.73 0.69 0.58 0.90 0.80
Adjusted R2 0.70 0.65 0.52 0.88 0.77
�R2 0.10 0.07 0.09 0.31 0.31
�F 13.94 0.001∗∗∗ 8.82 0.005∗∗∗ 8.19 0.007∗∗ 114.39 < 0.001∗∗∗ 57.87 < 0.001∗∗∗

CVLT-II, California Verbal Learning test, second version; CWIT, the Color–Word Interference Test, D-KEFS, the Delis–Kaplan Executive
Function System; MMSE, Mini-Mental State Examination; PM, prospective memory; WLT, word-list test. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.005.

Fig. 4. Graphic presentation of statistically significant associations between robot-administered tests and standardized neuropsychological
measures. Correlational coefficients indicated partial correlation after adjustments for age, sex, education, and Mini-Mental State Examination
scores.

DISCUSSION

The present study demonstrated the feasibility of
evaluating older adults on a range of cognitive tests
by using the HRI approach. All participants were able
to complete the robot-assisted tasks, and no reports
of adverse reactions or discomfort were received.
Our primary finding was that robot-administered cog-
nitive tests could distinguish between older adults
undergoing normal cognitive decline associated with

aging from those with MCI with adequate sensitivity
and specificity. Moreover, robot-administered tests
demonstrated sound ability to predict the results of
standardized cognitive tests conducted by a licensed
psychologist, even after adjustments were made for
demographic variables and MMSE performance,
indicating good construct validity.

This paper presents the first evidence that through
a relatively brief cognitive test battery conducted by
a social robot, older adults with a risk for developing
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dementia could be identified. The robotic tests that
revealed robust discriminability between MCI and
HO were those that assessed delayed episodic mem-
ory, PM, and aspects of executive function (i.e.,
inhibition and shifting). These cognitive domains,
especially episodic memory tasks in conjunction with
tasks that rely on executive control, serve as excel-
lent indicators for discriminating MCI from cognitive
function associated with normal aging as well as pre-
dictors for future progression from MCI to AD, as
identified in studies using standardized neuropsycho-
logical tests [22, 37–39]. Notably, we found that the
MMSE, a common clinical screening tool employed
in other HRI studies, was unable to differentiate the
MCI group from the HO group. Similarly, our robotic
evaluation revealed that both HO and MCI groups had
a high percentage of people (67% versus 100%) with
low performance on at least one of the selected tests,
indicating a high possibility of falsely identifying
HOs as individuals MCI when the classification was
based on a single test result. The group discriminabil-
ity was high when low performance was observed on
multiple tests, which is consistent with the results of
other studies [40, 41].

Notably, the PM measures appear to be sensitive to
the effects of aging, and a high proportion of HOs per-
formed poorly on the PM measures compared with on
other robot-administered tests. Determining whether
factors related to the psychometric property (e.g.,
skewed score distribution and limited score range)
of the PM measures or the lack of test preparedness
among the participants (the PM test was introduced
within 5 minutes of commencing the HRI session)
accounted for this result was difficult because we did
not include a standardized PM test to verify the robot-
assisted test results. However, the finding that HOs
exhibited age-associated decline in PM is consistent
with the results of several studies [42–44]. Neverthe-
less, these findings together support the notion that
the incorporation of more comprehensive neuropsy-
chological testing could improve the reliability of an
MCI diagnosis that predicts future cognitive decline
[40, 41].

Consistent with our hypothesis, the high predictive
capacity of the robotic tests on episodic memory, PM,
and executive function to ascertain the standardized
paper–pencil test results was observed. Despite the
promising results, differences between our robotic
assessment session compared with a clinical evalu-
ation setting should be highlighted. First, a robotic
assessment session demands greater test participant’s
independence and will to perform the cognitive tests

compared with that required in a clinical setting given
that the clinicians are more flexible and adaptive to the
participant’s needs (e.g., talk slower as appropriate).

Second, a standardized neuropsychological eval-
uation typically takes place in a quiet and distrac-
tion-free environment. By contrast, in the robotic
session, participants may have had greater difficulty
ignoring the distraction of the robot’s movements
or ambient noise while performing the tests, which
may resemble real-life environmental demands and
therefore improve the ecological validity of the cog-
nitive tests [45]. We observed that a higher proportion
of HO group members recorded results of ≥ 1 SD
below the age-appropriate norm in at least one of
the robot-administered cognitive tests compared with
that in the standardized cognitive tests. The perfor-
mance gap between the two types of tests may be
due to the greater number of environmental distrac-
tions in the robotic cognitive test setting than in
the standardized neuropsychological evaluation set-
ting. Alternatively, because all participants received
the robot-administered tests before the paper-and-
pencil tests, a practice-related improvement may have
affected the standardized cognitive test results, par-
ticularly for the CWIT measures [46]; this might
account for the performance gap between the two
testing sessions among HO group participants.

Third, a formal neuropsychological evaluation
always adapts a multimethod–multisource evaluation
approach, in which testing data is incorporated with
other types of data, such as information obtained from
patient or informant interviews as well as behavioral
observations (e.g., participant’s effort, psychological
status, and any language, cultural, or physical barriers
that might affect the interpretation of the test results),
to reach the final interpretation of a patient’s sta-
tus of cognitive function. By contrast, in the present
study, we focused purely on objective testing results
conducted by the robot, which may have biased our
interpretation of the results. Despite these differences
from a standardized neuropsychological evaluation,
our finding indicated that introducing robotic sys-
tems as a support tool for the health care system
offers new prospects for using social robots as a user
interface to improve access to cognitive screening for
community-dwelling older adults.

Self-administered cognitive tests using technolo-
gies such as the tablets, smartphones, or web-based
platforms have become prevalent in human society,
allowing greater flexibility in terms of how cogni-
tive abilities are assessed. Moreover, in this study,
given several key features of the robot, the HRI
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sessions could provide a superior cognitive testing
experience compared with other self-administered
technologies. For example, the robot was capable of
engage users more reliably [15, 47] due to its physical
presence as well as its ability to verbally interact and
communicate with users in real time. This differed
markedly from other types of human–machine inter-
actions not involving a physically embodied device.
Evidence suggests that older adults with cognitive
impairment consistently preferred a robot over a com-
puter [11] or virtual agent [48] because of the robot’s
physical presence and social interaction. Other stud-
ies have also reported that the physical presence
of robots elicited more likeability ratings and posi-
tive mood changes among both adults and children
compared with tablet-only approaches [49, 50]. In a
recent study undertaken by our team [51], we also
observed that compared with a tablet, participants
faced with a robot were more likely to engage in
prosocial behaviors (i.e., sorting the waste for recy-
cling). Similar to some existing technologies (e.g.,
smartphones), robots can continuously record multi-
ple types of behavioral data (e.g., verbal responses,
gestures, and facial expressions) over a given time
period, with such data available for later analysis
by professionals. Moreover, this multidimensional
data recording process can be automatically initi-
ated without requiring activation by the user. The
physical presence and data collection capabilities of
a robot facilitate microlongitudinal evaluations (i.e.,
evaluations of real-time fluctuations in the behaviors
and cognitive function of individuals over a given
time period) that can enhance the ecological validity
and reliability of cognitive assessment. Furthermore,
robots can extend current technologies (e.g., com-
puterized adaptive testing) by providing personalized
test administration or cognitive stimulation programs,
the type, difficulty, and variety of which can be
dynamically adjusted according to user performance
and test usage history in real time; this is a topic that
warrants further exploration (particularly when it is
combined with machine learning–based algorithms).
Although our robot in the present study was primitive
compared with forthcoming prototypes, our study
and findings provide critical initial platforms for
future development of more enhanced social robots
with technologies such as advanced speech and image
recognition and machine learning algorithms to serve
in capacities not feasible for other human–machine
interfaces.

The impact of artificial intelligence (AI)–based
solutions or technologies in health care, as well as

how best to incorporate those systems in health care
remain open questions [6, 52]. However, a study indi-
cated that although a lone pathologist outperformed a
deep-learning system in identifying metastatic breast
cancer, a combined approach with both deep learning
and pathologists resulted in a significant reduction in
the error rate, suggesting that cooperation between AI
and human was the most powerful means of improv-
ing clinical service [53]. A study reported that some
older Japanese adults are more willing to make first
contact for cognitive screening with a robot than
with a human neuropsychologist because of having
fewer psychological barriers to completing the tests
(e.g., avoiding nervousness or embarrassment) [17].
Although further investigations are warranted in the
domain of cognitive assessments among older adults,
we echo the findings of previous studies [6, 9, 15, 17]
that with appropriate test selection and interpretation
supervised by professionals (i.e., neuropsychologists
or health care providers), robot-assisted cognitive
evaluations can help deliver cost-effective health
services to communities (e.g., working in parallel
with psychometrists or technicians to administer the
screening tests), improve health care resource allo-
cation, and quickly identify individuals requiring a
more comprehensive diagnostic evaluation.

To our knowledge, this is the first study that went
beyond a single screening measure and employed a
series of social robot–assisted tests targeting multi-
ple cognitive domains to identify older adults with
MCI. Despite its innovations, the current study had
some limitations. First, our robot–initiated conver-
sations and the testing session without placing any
operational demands on participants. However, evi-
dence has demonstrated that many older adults are
uneasy about interactions with new technologies due
to concerns of overwhelming challenges or their per-
ceived inability to use the device [54]. In the present
study, we did not consider variables (e.g., techno-
logical skills, attitudes toward robots) [55, 56] that
may have generated confounding factors (e.g., induc-
ing anxiety) in participants’ cognitive performance
during the HRI study.

Second, the present study enrolled a small sam-
ple, especially for the MCI group, in which some
outliers were noted. The large intragroup perfor-
mance variation in the MCI group is consistent with
the results of our prior work [1, 22, 23]. Never-
theless, we conducted post hoc analyses on several
robot-administered cognitive test variables, includ-
ing the episodic memory and CWIT parameters,
after removing aforementioned outliers from the MCI
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group data. The results revealed the same pattern
as that without removing these outliers, indicating
the robustness of our findings. Furthermore, in the
sensitivity analysis conducted, a statistical power of
0.87, exceeding the standard requirement of 0.8, was
obtained according to the estimated power curve for
the final sample size of 66 and a mean Cohen’s f effect
size of 0.65. Despite that, the relatively small sam-
ple size may have limited our ability to examine the
heterogeneity among people with MCI because our
MCI sample comprised a mixture of patients with
amnestic and nonamnestic MCI. Future studies with
larger sample sizes are essential to replicate our find-
ings and identify patterns among different subtypes
of MCI.

Third, the HO participants were recruited based on
the criterion of an MMSE score of ≥ 26 and with-
out extensive neuropsychological evaluation, and
therefore, we cannot exclude the possibility of mis-
classification (i.e., identifying individuals with MCI
as HOs), particularly for those in the early stage of
MCI. Fourth, the modified CWIT test was not inde-
pendently administered by the robot due to the lack of
a display screen in the robot. Future studies involving
robots with visual display capability are warranted.
Finally, although a robot was capable of recording
various data, we focused on analyzing coarse-grained
quantitative data (e.g., total scores, total time used)
but not qualitative data (e.g., test-taking strategies,
response styles) or fine-grained quantitative data
(e.g., types of error responses, reaction time for mem-
ory tests) due to our relatively small sample size.
Combining these data may increase clinical utility
by providing more comprehensive information for
differentiating various etiologies (e.g., AD, vascular-
related) related to the subtle cognitive impairments
observed in people with MCI [45].

In conclusion, through a social robot, we adminis-
tered a short yet effective series of cognitive tests
to older adults with and without MCI as well as
healthy young adults. Our results demonstrated the
feasibility of using this HRI approach to differenti-
ate older adults with cognitive faculties associated
with the normal aging process from those who have
risk factors for later dementia development. Although
more methodologically rigorous evaluations of using
robots to assess cognitive function in older adults out-
side of the traditional clinical setting are warranted,
the present study highlights the possibility of incorpo-
rating a social robot–based approach into the health
care system when such approaches are undertaken
with professional supervision.
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