
 

 

 

 

Abstract— Human social interactions are laden with 
behavioral preferences that stem from hidden social network 
representations. In this study, we applied an artificial neural 
network with machine theory of mind (ToMnet+) to learn and 
predict social preferences based on implicit information from 
the way agents and social targets interact behaviorally. Our 
findings have implications for machine applications that seek to 
infer hidden information structures solely from third-person 
observation of behaviors. We consider that social machines with 
such an ability would have an enhanced potential for more 
naturalistic human-machine interactions. 

I. INTRODUCTION 
The use of artificially intelligent machines that 

dynamically interact with people is proliferating across many 
aspects of human life such as in interactive virtual agent 
service platforms [1], [2] and socially assistive robots [3]–[6]. 
Nevertheless, the efficacy of such social machines is limited 
by the naturalness of their interactions with users. Specifically, 
human-machine interactions are typically hampered because 
the interactive actions engaged by machines are often 
contextually aberrant and do not fit human social behavioral 
norms. Thus, learning algorithms that help social machines 

display more human-like contextually relevant interactive 
behaviors should enhance their intended functionality.  

One characteristic driving fluent human social interactions 
is access to information about the underlying social network 
of the persons involved, which is often implicit [7], [8]. For 
example, suggesting a friend call Bill Gates about a lunch 
appointment would be absurd unless one knew that he is a 
common acquaintance. Also, one might talk about sensitive 
matters with a sibling amongst other family members but 
avoid such topics with the sibling when amongst colleagues. 
In the above scenarios, knowledge of the collocutor’s social 
network is implicitly required to determine if a given 
interactive action would be contextually pertinent or not. 
Similarly, naturalistic human-machine social interactions 
would require machines to represent and leverage on 
information about the underlying social networks governing 
behavioral interactions between humans. 

Social networks, however, are abstract constructs in human 
minds that are hidden from third-party observers such as 
another person or a machine. A social network exists only 
because the persons involved preferentially interact with each 
other in specific ways. As such, the nature of social 
connections between persons must be inferred from 
observations of their interactive behaviors. Critically, work 
has shown that artificial neural networks implementing 
Theory of Mind (e.g. ToMnet [9]) can observe past social 
interaction outcomes between agents and targets (derived 
from predetermined interaction rewards) and form internal 
representations of the agents’ hidden false beliefs. In addition, 
other works have also evaluated the importance of Theory of 
Mind in machines in order to enhance human-machine 
interactions [10]–[12]. 

In this study, we adapted the work in [9] to construct 
ToMnet+ and evaluated how its ability to represent hidden 
social networks from observed interactions between agents 
and targets. Such a demonstration has implications on how 
neural network models might be engaged to infer deep 
relational structures in apparently disparate observations 
across various data problems. Note that this approach is 
distinct from previous studies on inferencing social 
relationships using Bayesian algorithms [13]. In addition, as 
mentioned, an artificial neural network developed along these 
lines might also be integrated as a dynamic module in social 
virtual agents or robots to enhance human-machine 
interactions across various functional contexts. 

Core to our approach in this work is simulating plausible 
social networks that constitute ground truth against which to 
assess the performance of ToMnet+ (Fig. 1). These simulated 
social networks consisted of agents with different inter-
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personal connection weights to targets. Importantly, 
connection weights were based on the range of scores from 
the Social Support Questionnaire (SSQ) commonly used in 
Psychology to evaluate real human social dependencies on 
specific persons [14]. In general, people more readily 
approach and interact with persons in their network whom 
they perceive as providing them with greater social support  
[10]–[12], [15], [16] 

Simulated social support networks were thus used to 
generate sets of agent interactions with targets in different 
social contexts from which ToMnet+ learned. To test for a 
hidden social support network representation, we asked 
ToMnet+ which target an agent would preferentially interact 
with over various novel combinations of social contexts. We 
considered that the rank order of agent-target social support 
weights captures the base topology of our simple simulated 
social networks. As such, the goal is to determine if the 
judgement of ToMnet+ on agent-target social interaction 
preferences could predict a similar rank order when compared 
to the social support weights.  

In the following, Section II considers relevant findings on 
machine learning of human social preferences, and expands 
on the notion of social support, its influence on human social 
interaction, and machine theory of mind. Section III covers 
our methodology regarding simulation generation, the SSQ, 
additional real human social interaction data acquisition for 
ecological validation, and the ToMnet+ architecture and 
implementation. Section IV reports ToMnet+ performance 
results for both simulated and human data. Section V 
discusses the findings and conclusion. 
 

II. BACKGROUND AND RELATED WORKS 

A. Machine Learning of Social Interaction Preferences  
 Both in the literature and in commercial applications, there 

are many instances of artificial intelligence being used to learn 
user preferences in order to provide personalized, or targeted, 
services from different types of data – visual, verbal, metadata 
– and with different machine learning approaches.  

In the field of virtual agents, Recommender Systems are 
ubiquitous on web platforms and in our personal computing 
devices (smartphones and others). These artificial agents learn 
human preferences and adjust their service accordingly with 
the objective of maximizing the time the user spends using the 
platform, which often translates to increased profits from 
advertisements. These systems often rely on hard metrics (e.g. 
usage time, number of items consumed), content meta-data 
(e.g. tags, title, author) and user-generated data (e.g. ratings, 

engagement in social feedback systems) to train the learning 
structures that adjust the nature of the content feed shown to 
the user [1], [2].  

Socially Assistive Robotics is a discipline where a robot –
defined as an embodied intelligent agent – provides a service 
to its user, either physically (e.g. rehabilitation therapy) or 
psychologically (e.g. companionship, emotional support). 
Previous works [3]–[5] have indicated that autonomous 
cognitive and social profiling of the user are key to deploying 
social robots in environments outside of the laboratory (e.g. in 
hospitals, schools or at home). Given the recent explosion of 
social media and ad-based media consumption platforms, data 
to train such systems is now abundant, but not often made 
publicly available. To this end, recent work engaged robots 
that interpret the behavior of their users through implicit cues 
in their facial expression and body gestures to infer mental 
states, personalities and emotions and, using this information, 
use a decision-making process to determine how to best 
interact with a specific user. In [17] a platform for robot-
assisted photo reminiscence for the elderly was introduced. 
Reminiscence Therapy is an intervention commonly used to 
alleviate neurodegenerative impact in patients with Mild 
Cognitive Impairment. It most often relies on the evocation of 
memories from the users’ lifetime through discussion of 
personal effects such as photographs. The authors 
implemented a variety of deep neural networks and a 
knowledge-based inference process to generate questions that 
are directly related to the visual content of each photograph. 
Results showed that participants felt more engaged when the 
robot asked questions related to the photograph and their 
speech than when not. [18] presented a method to promote 
trust between humans and robots. The approach was based on 
Natural Language Understanding techniques where, when the 
user discloses their vulnerability to the robot, the system could 
infer the underlying feelings and desires of the user in order to 
provide relevant and effective emotional support. Finally, [19] 
and [20] discuss the importance of learning user preferences 
through interactions with an emotional support robot for 
children. The system presented performed a variety of actions 
(e.g. play videos, tell jokes), and learned user preferences by 
assessing emotional reactions from facial expressions with an 
Interactive Reinforcement Learning algorithm. The results 
revealed that people gave more positive feedback about and 
were more willing to interact with the robot after several 
sessions when it learned their preferences. 

In sum, the evidence above shows that social machines that 
infer user mental states through their implicit affective 
behaviors can engage actions better catered to user preferences, 
which in turn improves user experience and usage of the 
machine. However, as mentioned, selection of appropriate 
human-like social interactive behavioral preferences requires 
that the system also infers the user’s social context. Thus, the 
system proposed here aims to infer the social network of the 
user from naturalistic observation of the users’ behaviors 
around others in order to refine interactions between virtual 
agents or robots with users across various social situations. 

B. Social Support Networks 
The role of social networks in modulating human inter-

personal interaction behaviors has been extensively studied in 
sociology and psychology. To our knowledge, [21] was the 
first study to use the term “network” and apply its concept on 

 
Fig. 1. An example instance of the simulated simple social support network 
of agent 𝑎" , and four targets, {𝑔%|𝑠 ∈ [1,4]}. Connections between the agent 
and targets represent the degree of social support (us) the agent perceives for 
each target. 
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a small Norwegian community to characterize how pairs of 
persons were socially related to each other. Specifically, two 
persons in the social network might be friends, each with their 
own other sets of friends, some of which might know each 
other or not. In order to achieve certain goals in the social 
network, each person interacts with specific sets of others, 
resulting in the formation of sub-classes of social function. 
Social networks are thus graphs with specific topologies [22] 
that emerge from tracing out the paths of relationships between 
a  given person and how that person socially interacts with all 
other persons in the network.   

Importantly, as mentioned, social network structure or 
topology also determines the sort of social interactions a 
person preferentially engages in or not. Critically, a person’s 
social network mediates the ease of obtaining support from 
others for certain needs [16], [23] . For instance, a baby obtains 
food from parents more readily than from siblings, and seeks 
out siblings for other purposes (despite similar physical 
proximities for both). Thus, a given person maintains several 
different classes of social support networks for different needs 
(e.g. emotional, financial, health) [24]. Such social support 
networks drive many everyday social interaction decisions 
between different people. 

Several approaches have been applied to index social 
support networks [25]. These methods range from assessments 
of the availability of assistive persons to self-ratings of 
personal levels of social functioning. Of these, the Social 
Support Questionnaire (SSQ) [14] is one of the most common 
and well-validated instruments that is also easy to use. 
Essentially, the SSQ incorporates an objective demographic 
(number of persons for a given need) and subjective 
psychological information (satisfaction of support from each 
person) across different types of support into its social network 
characterization. Its test format is also straightforward and 
systematic in a manner that is very suitable for the purposes of 
this study (see Methodology). Thus, we frame our simulated 
and real human social network structures adapting from the 
SSQ. We then construe social interaction preferences as a 
function of the differential satisfaction with received support 
across persons in one’s social network. 

C. Machine Theory of Mind 
A key challenge in machine social network learning is the 

requirement to infer the hidden social connections from third-
person observations of interaction behavior between agents 
and targets. This is a classic Theory of Mind problem, which 
entails the psychological mechanisms underlying a person’s 
ability to represent a model of other’s beliefs. For instance, in 
the famous Sally Anne test of Theory of Mind, the subject, 
experimenter, and a confederate together view a doll being 
placed in a box. The confederate then leaves the room after 
which the experimenter hides the doll in another second box. 
When the confederate later returns, subjects with Theory of 
Mind should not be surprised that the confederate looks for the 
doll in the first and not the second box. That is, the subject 
infers the confederate’s false belief from the logical 
association of observed sequences of events and behaviors. 
Such inferring of others’ beliefs is one of many aspects of 
Theory of Mind, which involves various specific social, 
cognitive, and affective processes. Importantly, we propose 
that to infer social networks explaining the interactions 
between agents and targets from observations of the 

interactions likely involves Theory of Mind processes in 
humans. 

[9] presents ToMnet’s ability to represent an agent’s false 
beliefs. ToMnet observes past social interactions of an agent 
with targets and encodes character embeddings representing 
which targets an agent prefers over these histories. Integrating 
these character embeddings with internal state representations, 
ToMnet predicts which social actions an agent would perform 
with respect to targets in new given contexts. Importantly, the 
authors also applied random changes to target states in the 
social context that were hidden to the agent. For example, a 
target might be removed from the context, with this 
information known to ToMnet but not to the agent. Despite 
this, ToMnet still predicted agent actions vis-à-vis the agent’s 
status quo as if targets were present, thereby displaying its 
inference about the agent’s false belief. Because of its ability 
to derive hidden states from observations, in this proposed 
system, we apply a modification of ToMnet to infer social 
networks through observations of how agents interact with 
targets.   

III. METHODOLOGY 

A. The Social Game for Simulated Agents 
 As mentioned, key to our approach to validate ToMnet+’s 
ability to infer social networks is to first generate ground truth 
information against which we can assess the system’s 
performance. To this end, we simulated social networks for 
30 virtual agents , {𝑎"|𝑖 ∈ [1,30]} , each with four different 
social targets, G={𝑔%|𝑠 ∈ [1,4]}, whom the agent perceives as 
providing different degrees of social support 𝑢% (Fig. 1; see 
below). For each agent 𝑎", we simulated 10,000 2-dim 12×12 
grid worlds, {𝑤4|𝑗 ∈ [1, 10000]}. In each grid world 𝑤4, we 
placed ntarget targets (range from 1 to 4) and nbarrier barriers 
(range from 0 to 50) in random locations (Fig. 2). From the 
agent 𝑎" ’s perspective, each target 𝑔%  has a social reward 
value 𝑢%, and a physical distance 𝑑4%, which is the minimum 
steps the agent needs to take to approach the target in 𝑤4. The 
agent could only move vertically or horizontally, but not 
diagonally. The agent could not move into where the barriers 
are or out of the boundary of the grid world. Once the agent 
reaches one of the targets, the trajectory is completed and a 
new grid world 𝑤478 follows. For each world 𝑤4, the target 
that the agent 𝑎" approaches in the end (𝑔4∗) is decided by  
 

 
 
Specifically, the agent 𝑎"	approaches 𝑔4∗  using the shortest 
path in a deterministic way, constituting a grid world 
trajectory instance 𝜏4	(green arrows in Fig. 2). Note that in our 
present implementation the agent has full visibility of the grid 
world. For each virtual agent, the social reward values for its 
four targets {𝑢%|𝑠 ∈ [1,4]}were sampled randomly from a 
uniform distribution between 0 and 26. This range of 𝑢% [0,26] 
was chosen to adjust the maximal number of steps to 
diagonally span  a no-barrier grid world without retracing (23) 
based on the response range of 9 and maximum score of 10 in 
the social game for human participants (10*23/9 ≈ 26); see 
also III.B). We also imposed a constraint such that sample u’s 
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for 6 virtual agents had a standard deviation (SD) of 0.1, 12 
agents had SD 1.1, and 12 agents had SD 2.1. We imposed 
this constraint on the SDs to test the robustness of the model 
(preference inference should be harder for smaller SDs). 

B. Social Support Questionnaire  
The social networks constructed in the above simulations 

and assessed in human participant data below were based on 
the SSQ [14]. The original SSQ is written in English and 
consists of 27 items evaluating different aspects of social 
support. In this study, to obtain human agent-target social 
reward values, we applied two modifications to the SSQ. 
These include translation to Chinese and simplification to 7 
items focusing on more psychological emotional aspects of 
support. These items, each on a 10-point (1 to 10) Likert scale, 
asked participants to rate the degree to which their target 
persons fulfilled the following roles: 1) The person can 
provide me with social support, 2) I can turn to this person for 
advice about handling problems, 3) The person cares about 
me, regardless of what is happening to me, 4) I can count on 
the person to help me feel better when I am feeling generally 
down in the dumps, 5) I can count on the person when I need 
help, 6) I can share my most private worries and fears with 
the person, 7) The person is important in my life. Participant 
ratings for these items were then used to compute the social 
reward value for the human social game. Specifically, we 
scaled the averaged value of the adapted SSQ ratings for each 
target by a factor of 23/9, where 23 is the maximal steps to 
take to span the diagonal of a no-barrier grid world and 9 is 
the range of the adapted SSQ score. The scaled adapted SSQ 
values were then assigned to the target as its social reward 
value with respect to the agent. 

C. The Social Game for Human Participants 
Twelve human participants (mean age = 26.2 yrs, age range 

23 to 32 yrs, 4/8 males/females) played a social game which 
had a similar format as the game for simulated agents. 
Participants all gave written informed consent for this study, 
which was approved by the National Taiwan University local 
Research Ethic Committee (NTU-REC case no. 
201803HS017). Participants played the game via web 
browser either by mobile phone or computer and all 
completed at least 150 trajectories.  

Before starting the social game, human participants were 
asked to list four target close friends/family members whom 
they felt provided them with the most social support. The 
participants then completed our adapted 7-item SSQ for each 
of the four target persons. Participants were then presented 
with a screen showing a grid world with 1-4 targets and 
barriers, the reward assigned to each target, along with an 
agent that the participant should control (Fig. 3). The action 
space was the same as for the virtual agent (i.e., only 
horizontal and vertical moves). The social reward value of 
each target was the scaled adapted SSQ score. The current 
score was shown in the upper left corner. Each step costs one 
point. The final score for each trajectory round was the social 
reward value of that target minus the number of steps taken. 
After reaching a target, another grid world context was then 
presented to the participant consisting of different target 

sampling (out of the listed four), spatial configurations, and 
score set to 0. Note, two participants played the game twice 
entering distinct sets of targets each time. Thus, we had a total 
of 14 human data sets. 

D. ToMnet+ 
Given either the simulated or human data described above, 

in order to infer the agents’ preferences we applied a 
ToMnet+ model, extending from [9] (Fig. 2, 4). Specifically, 
we based our model on section 3.2 of [9] which was designed 
to infer goal-directed behavior from single shot of new 
trajectories. In addition, the major extension from the original 
ToMnet is that we included a “preference inference phase” to 
the system. The primary trainable parameters reside in the a 
character network and prediction network components of the 
model (Fig. 4). One ToMnet+ model was trained for each 
virtual agent/human. For each agent, ToMnet+ takes two 
inputs at a time: a trajectory 𝜏4	and a query state q=. The query 
state q= is the shot of the first time-step of another trajectory 
𝜏=  (with 𝑗 ≠ 𝑘). The rationale is that the character network 
should extract an abstract representation of the agent’s 
preference for targets from 𝜏4  and represent it as a character 
embedding 𝑒ABCD,4 . The prediction network then takes 𝑒ABCD,4 
as input and predicts the target (𝑔=∗E) the agent will approach 
in another trajectory given query state q= . The model is 
trained end-to-end with tuples of (𝜏4, q=, 𝑔=∗). The rationale is 
that once the model is trained, it can (1) extract the agent’s 
preference (𝑒ABCD,4) from the trajectory (𝜏4)	and (2) utilize the 
preference information (𝑒ABCD,4) to predict which target the 
agent will approach (𝑔=∗E).   

The character network consumes each trajectory 𝜏4  and 
outputs the character embedding 𝑒ABCD,4, which contains the 
abstract representation of the agent’s preference for each 
target. Each trajectory 𝜏4  is a 4d tensor (10×12×12×11), 
where 10 is the number of consecutive time steps in the 

  
 
Fig. 3. An example grid world of the social game for humans. In each trial, 
participants are presented with a 12×12 grid world with 1-4 targets, 
represented by a heart, a key, a paw, and a tree. The name associated with 
each target as well as the corresponding social reward, 𝑢%, and the current 
score are shown in the left. The human participant (map marker) navigates 
horizontally or vertically to reach their desired target by keypress or clicking 
buttons on the mobile phones. Once the participant reaches one of the targets, 
the participant is rewarded with the final score, which is derived via 
subtracting 𝑢%, by the number of steps taken. 

? ? : 23

? ? : 18

Final Score: 
26-7=19

Anne: 23

Ben: 26

Matt: 18

Amy: 18
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trajectory, 12 is both the width and height of the grid world, 
and 11 is the number of feature channels. Trajectories with 
more than 10 steps are truncated such that the last 10 steps are 
preserved, whereas the ones with less than 10 steps are zero-
padded before the first step. The 11 binary feature channels 
include 5 actions (up, down, left, right, reaching the goal), the 
positions of the 4 targets, the position of the obstacles, and the 
initial position of the agent. If a target is absent in the 
trajectory 𝜏4 , its feature plane is zero-padded. Following the 
design of [9], thirty-two 3×3 convolutional kernels are first 
applied to each time step (12×12×11) separately to scale the 
number of channels from 11 to 32. The convolved 𝜏4  
(10×12×12×32) is then passed into a resnet [26] with 5 
residual blocks, each with 32 channels, batch-normalization, 
and ReLU nonlinearity. The output from the resnet is a 4d 
tensor (10×12×12×32), which then passes through a global 
average pooling layer that collapses the entire spatial 
dimension into a 2d tensor (10×32), which is a sequence 
representing the trajectory spatial information in each time 
step. This sequence with 10 time steps is passed to a single-
layer long short-term memory (LSTM [27]) with 64 channels. 
The last LSTM cell state summarizing all time steps is then 
extracted with a dense layer to yield an 8-dim character 
embedding which is 𝑒ABCD,4.  
 The prediction network predicts the target 𝑔=∗E that the agent 
will approach in the query states q=  given 𝑒ABCD,4 . The 
character embedding 𝑒ABCD,4  is spatialized and concatenated 
with the query state q=, which together form a 3d tensor of 
size 12×12×(11+8). This tensor then passes through 32 3×3 
convolutional kernels which scales the number of channels 
from 19 to 32. The results are fed into a 5-layer resnet, with 
32 channels, batch-normalization, and ReLU nonlinearity, 
followed by a global average pooling layer, and a dense layer 
to yield 4-dim logits, followed by the output softmax layer to 

give 𝑔=∗E . The loss function used was the softmax cross-
entropy loss. The ToMnet+ model for each virtual and human 
agent was trained separately with an 8:1:1 training, validation, 
and testing split of the tuples (𝜏4, q=, 𝑔=

∗ ). We trained each 
model with the Adam optimizer [28] with initial learning rate 
= 10GH, batch size = 16, and number of steps = 10H.  
 After the model was trained, it was then used to infer virtual 
agent/human’s preference for each target. For each agent 𝑎" , 
we fed 100 pairs of (𝜏47, q=7) to the trained model. 𝜏47 is a 
subset of 𝜏4  that had exactly 4 targets to ensure that the 
generated test character embedding contains information 
about 4 targets. q=7 is a special query state that exists only for 
preference inference (we called it “inference query state”), 
where there are no barriers and the agent is placed equidistant 
from all targets. The exact positions of the 4 targets were 
shuffled randomly across all pairs. For each pair of (𝜏47, q=7), 
the soft-max probability for each target was averaged across 
100 pairs. The average softmax probability is then rank-
transformed to get agent 𝑎" ’s inferred preference ranking 
	𝑝𝑟𝑒𝑓M . ToMnet+ was implemented in Tensorflow version 1.12 
[29].  

IV. EXPERIMENTAL RESULTS 

A. Simulated Data 
The performance of the trained models was evaluated with 

the tuples (𝜏4, q=,𝑔=
∗ ) in the testing set, measured by the 

accuracy of predicting the virtual agents’ final targets 𝑔=∗ from 
the query state q=  given another trajectory 𝜏4  (Fig. 5). The 
model for each virtual agent reached above 80 % regardless 
of the SD(𝑢) . A Wilcoxon signed-rank test indicated the 
model accuracies were above chance, W = 465, p = 
1.86 × 10GR. Critically, in the preference inference phase, the 
model could infer the virtual agents’ underlying preference 
rankings (Fig.  6A). To quantify how well ToMnet+ inferred 
target preference, we derived Kendall’s tau-b (a non-
parametric correlation coefficient) for each agent via 

 
Fig. 4. Schematic diagrams of the character and prediction networks and 
other components in the ToMnet+ architecture. The number in 
parentheses indicate the size of tensors at each step. Conv: convolutional 
layer, BN: batch-normalization, ReLU: rectified linear unit activation 
function, Avg. Pooling: average pooling layer, LSTM: long short-term 
memory layer, FC: fully-connected layer, Spatialize: spatialize 2d vector 
into 3d tensor, Concatenate: concatenate two 3d tensors, 𝜏4 : the 
trajectory, 𝑒ABCD,4 : the character embedding, q= the query state, 𝑔=∗E the 
predicted approached target. 

 
 

Fig. 5. Accuracy in the test set for models trained with simulated data. 
Each stack of bars represents virtual agents with different standard 
deviation (SD) of social support values across 4 targets in the training 
set. Each red bar is the average model test accuracy in test set (averaged 
across all the simulated data with the same SD). The blue bar is the 
average random rate which represents the baseline to be compared with. 
Random rate for each model is derived for each simulated agent by 
dividing 100% by the average number of targets in the trajectories. The 
error bars represent the standard errors. 
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correlating the ground-truth simulated preference ranking and 
the inferred preference ranking. Subsequently, we tested 
whether the median of the distribution of Kendall’s tau-b was 
greater than 0 with a Wilcoxon signed-rank test. The result 
indicated that the inferred preference rankings significantly 
correlated with the ground-truth, W = 390, p = 1.61 × 10GS. 

B. Human Data 
We evaluated the models trained with human data in the 

same way as for simulation data. The model accuracy was 
between 50.0% to 81.6% across all 14 data sets, which is 
significantly above chance, W = 105, p = .0001.  Moreover, 
with greater numbers of human training trajectories available, 
model accuracy improved (Fig 7). The model could 
reconstruct participants’ preference rankings (Fig. 6B). We 
used the same method as above to quantify how well 
ToMnet+ reconstructed ground-truth human preference 
ranking. Inferred preference rankings significantly correlated 
with the ground-truth human preference rankings, W = 105, p 
= .00103.  

V. DISCUSSION 

A. Limitations 
It is possible that the human social game implemented in 

this study was not an entirely accurate probe of the true social 
preferences of the human participants. The structure of the 
social game was such that participants could have engaged 
movements in grid world simply to maximize points in the 
game. As such, the participant behaviors we tested may not 
reflect their underlying social networks but merely their 
ability to adhere to their reported SSQ ratings of targets and 
engage strategic actions. Nevertheless, we argue that as long 

as participants truthfully reported their social support target 
details and sought to maximize final scores in the game, the 
resulting behavior sufficiently allows ToMnet+ to infer 
participant social support details as reported. We maintain 
that these do reflect participant social support networks, and 
critically, these details were hidden from ToMnet+.  

The approach we adopted to evaluate ToMnet+ relied on 
quantized spatial movement in grid world as a proxy for social 
interaction preferences. This grid world input format limits 
ToMnet+’s applicability to problems that might not be 
suitably formulated as such, albeit possible mapping 
transformations might be found. Also, we note that agents in 
our grid world were only allowed to interact with targets and 
targets did not interact with each other. This is certainly not 
realistic since true human social networks are more dynamic, 
with all agents/targets co-interacting. Moreover, ToMnet+ 
maintains a birds eye view of the grid worlds, which is not 
always available in real world settings. Thus, while our grid 
world representation was adequate for our proof-of-concept 
study to infer simple social networks, future extensions must 
consider other more universal and dynamic formats of value-
laden information (e.g. evolving more complex graphs of 
actions, conceptual data, or even facial expressions). 

B. Conclusions 
Our findings highlight the potential of machine 

applications that infer implicit human preferences from third-
person behavioral observation data. This is distinct from most 
current applications that are focused on dissociating explicit 
signals (e.g. recognizing emotional categories from facial 
expressions). This is also distinct from the previous study, 
which used ToMnet to extract preference from simulated 
agents without hidden associative structures. This is further 
distinct from previous work adopting a Bayesian modeling 
approach [13]. We demonstrate that an artificial neural 
network with ToMnet-based architecture can also model 

 
Fig. 6. The ground-truth preference matrix and the reconstructed 
preference matrix for (A) simulated data and (B) human data. The color 
of the cell at row i and column j encodes the agent 𝑎"’s ranked preference 
(1-4; 1 being the favorite target and 4 being the least favorite) for target 
𝑔4 . If there are tie(s) in the preference rank among targets (e.g., two or 
more targets share the same preference score), the targets with ties are 
assigned the average rank value (i.e. two targets share the second place in 
the preference score will have the rank value of 2.5). The ground-truth 
preference matrix is constructed by the rank-transformed social support 
value. The reconstructed preference matrix is constructed by the 
preference rank inferred by ToMnet+ (see Methods). The labels on the 
left are, SD(𝑢),  the standard deviations of the ground-truth preference 
scores (before rank-transformation) between the 4 targets. 

 
Fig. 7. Accuracy for the test sets as a function of the number of 
trajectories in the human data training set. Red round dots are the model 
accuracies for the test set of each human participant. Blue triangles are 
the random rates, which should be the baseline to be compared against. 
Random rates were derived for each participant by dividing 100% by 
the average number of targets in the trajectories. The x-axis is log-
transformed for clearer illustration. Each grid along the x-axis 
represents 100 trajectories. 
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aspects of real hidden social networks reflected in human 
social preferences.  

While this present study investigates an algorithmic 
approach to infer social networks from social behaviors, our 
findings might also have implications in neuropsychological 
research. In principle, the human brain is also a neural 
network that operates by integrating observations of human 
interactions to generate internal hypotheses about real social 
networks [30]. As such, such models of learning and behavior 
contribute formal theory about information mechanisms at 
work in human brains. We suggest that such platforms with 
specified neural network architectures might be used to better 
understand how the human mind grasps reality. 

Critically, this proof-of-concept provides primary 
demonstration of ToMnet+’s ability to infer deep relational 
structures via observing social interaction behaviors. We 
recommend that future work should now begin to evaluate its 
efficacy in other data problems and examine its application in 
improving human-machine interactions using virtual agents 
or robots. 
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